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ABSTRACT

It is a theorem of Shor that if G is a word-hyperbolic group, then up
to isomorphism, only finitely many groups appear as fixed subgroups of
automorphisms of G. We give an example of a group G acting freely
and cocompactly on a CAT(0) square complex such that infinitely many
non-isomorphic groups appear as fixed subgroups of automorphisms of
G. Consequently, Shor’s finiteness result does not hold if the negative
curvature condition is relaxed to either biautomaticity or nonpositiv e
curvature.

1. Introduction

Let ¢: G — G be an automorphism of a group. The fixed subgroup of ¢,
denoted by Fix(¢), is defined as follows:

F or example, if there existsz € G such that ¢(g) = zgx~

Fix(¢) = {g € G: 6(9) = g}

L (i.e., if ¢ is inner),

then Fix(¢) = Cq(x), the centralizer of z in G.
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Finitely generated free groups have the remarkable property that their fixed
subgroups are finitely generated. Specifically:

THEOREM 1.1: If ¢: F, — F, is an automorphism of a free group of rank r,
then rank(Fix(¢)) < r.

Theorem 1.1 began as a conjecture attributed to P .Scott, and w asintially
proven in various geometric cases. Gersten [Ger87] was the first to prove that
Fix(¢) is always finitely generated, and Bestvina and Handel [BH92] were the
first to establish that rank(Fix(¢)) < r. See [Ven02] for a survey of this area,
which has maintained continual activity.

Note that the finite rank hypothesisis crucial in Theorem 1.1. Indeed, for
each n, the infinite rank free group F has an automorphism ¢, such that
Fix(¢p) & F.

Another example worth noting is the group

(2) Fy X Z = {a,b,t | [a,t],[b,t]),

as the automorphism ¢ induced by a — at, b — bt,t — t has Fix(¢) = Fio x Z.
Indeed, it is not hard to see that Fix(¢) is the subgroup of F» x 7Z consisting
of those elements with zero exponent sum in a and b. Nevertheless, F,, X 7
has only finitely many isomorphism types of fixed subgroups; more precisely ,
we leave it as an exercise to show that if ¢ is an automorphism of F),, x Z, then
either ¢(t) = t, in which case Fix(¢) is isomorphic to F,. x Z with r < n or
r =00, or ¢(t) =t~ in which case Fix(¢) is free of rank r < 2n — 1.

Recently, Shore [Sho99] gave the following interesting generalization of
Theorem 1.1:

THEOREM 1.2: Let G be a word-hyperbolic group. Then up to isomorphism,
only finitely many groups appear as fixed subgroups of automorphisms of G.

In this paper, we give examples of finitely generated groups that have infinitely
many non-isomorphic fixed subgroups. More precisely, we show that:

THEOREM 1.3: There exists a group G that acts freely and cocompactly on the
cartesian product of tw o trees sud that infinitely many non-isomorphic groups
appear as fixed subgroups of automorphisms of G. In particular, there exist
cen tralizers inG whose abelianizations are free abelian of arbitrarily high finite

rank.

We note that G is the fundamental group of a compact nonpositively curved
square complex, which means that G is both a CAT(0) group and a C(4)-
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T(4) group, and thus biautomatic [GS91]. Therefore, Theorem 1.3 demon-
strates a contrast betw eenthe bhehavior of word-hyperbolic groups and their
semi-hyperbolic generalizations.

We begin the construction of G by reviewing complete square complexes
in Section 2. In Sections 3 and 4, we describe the structure of centralizers in the
fundamental group of a complete square complex, and in Section 5, we specialize
that discussion to produce the desired example.

Notation 1.4: 1f H is a subgroup of G and x € GG, then the centralizer of x in
H is denoted by Cg(x). The length of a reduced word w is denoted by |w]|. The
abelianization G/G’ of a group G is denoted by Gap.

2. Complete square complexes

Recall that a square complex is a combinatorial 2-complex whose 2-cells are
squares. We are mainly interested in the following type of square complex,
introduced in [Wis96].

Definition 2.1: A complete square complex, or CSC, is a square complex
X such that:
1. The 1-cells of X are partitioned into tw o classes,X and Xy, that induce
the structure of a complete bipartite graph on the link of any vertex of X.
We think of X, as the v ertical 1-cells and X as the horizontal 1-cells.
2. The squares of X are oriented as sho wnin Figure 1, with vertical cells
oriented “up” and horizontal cells oriented “right”, and the 1-cells of X
are oriented in a compatible manner.

By a slight abuse of terminology, we will use Xy and Xy to refer to the graphs
formed by taking the union of the appropriate 1-cells and the 0-cells of X. We
also call the elements of H = 71 (Xg) (resp. V = m (Xy)) corresponding to the
oriented 1-cells of Xy (resp. Xy ) the standard generators of H (resp. V).

F or expository comw enience, our notation and terminology differs somewhat
from [Wis96], but is essentially equivalent. In particular, what we are calling a
CSC here is actually a directed VH CSC, in the terminology of [Wis96].

Figure 1. Orientation of the squares in a CSC
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The fundamental groups of CSC’s ha vemany interesting properties. For
example, the universal cover of a CSC is the product of tw otrees [Wis96,
Thm 1.10], so the fundamental group of a compact CSC acts freely and co-
compactly on a CAT(0) space. We also have the following decomposition.

Definition 2.2: Tt is not hard to see that a CSC X has the following structure
as a graph of spaces [SW79]:
1. The vertex spaces of X are the connected components of the graph Xp.
2. The edge spaces of X correspond to the connected components of X — Xy,
and each edge space of X has the form A x [0,1], where A is an oriented
graph.
3. The ends A x 0 and A x 1 of an edge space A x [0, 1] are attached to their
corresponding vertex spaces by covering maps.
We call this graph of spaces the horizontal decomposition of X. Note that
if Xy is connected, and there is exactly one edge space in the horizontal de-
composition of X, then we can give 71 (X) the structure of an HNN extension
of H = m(Xp) by taking the stable letter to be any of the standard generators
of V = ™1 (Xv)
Let X bea CSAet H = m(Xpy), and let V = m1(Xy ). We will need the

follo wing obserwations about (X ), all of which can be deduced easily from the
fact that X is isomorphic to the product Xy x Xy (see [Wis96, Thm 1.10]).

LeMMA 2.3 (Normal forms): The inclusion of Xy and Xy in X induces em-
beddings of H and V' in m(X) such that HNV = 1. Furthermore, ifX has one
0-cell, then for any o € w1 (X), there exist unique h € H and v € V such that
o = vh.

LeEmMMA 2.4 (HV =V H): Suppose X has only one 0-cell, and let hg € H and
vg € V be reduced w ords. Then for the unique reduced words hy € H and
vy € V such that hovg = v1hy, we havelhy| = |ho| and |v1| = |vg|. F urthermore,
if ho (resp. vg) is a positive standard generator of H (resp. V'), then so is hy
(resp. vy ).

reREENen

Figure 2. Example 2.5
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Example 2.5: Let X be a square complex with one 0-cell, 1-cells {a,b, ¢, z,y},
and 2-cells defined by the six squares in Figure 2. Then X is a CSC with Xy =
{a,b,c} and Xy = {z,y}. The horizontal decomposition of X is illustrated in
Figure 3. The bouquet of tw o circles on the righ represents X, which is also
the lone vertex space of the decomposition. The two graphs on the left are both
combinatorially equivalen t to a graph A, and the coering maps used to attach
the edge space A x [0,1] to Xp are given by the labels on the tw o graphs. Note
that the vertices in the left-hand graphs are precisely the endpoints of a, b, and
¢, as indicated, and the vertical edges {a, b, ¢} are oriented from the low er graph
to the upper one.

X
y y
T
X
y
y
> o=a
X X
O=5b
y ® =

Figure 3. Horizontal decomposition of Example 2.5

3. Horizontal centralizers in CSC groups

Throughout thisction, let X be a CSC with one vertex, let G = 71 (X), let
H =m(Xpg),let V =m (Xvy), and let ¢ be a standard generator of V. We begin
our study of centralizers in CSC groups by looking at C'y(c™), the “horizontal”
part of the centralizer of ¢™.

Let
(3) H(m)=HNc"Hc ™,

and let X 7 (m) be the based cover of Xz corresponding to the subgroup H (m) <
H. For example, whenm = 1, H(1) is one of the associated subgroups in the
construction of G as an HNN extension of H, and X (1) is precisely the graph
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A that appears in the horizontal decomposition of X (Definition 2.2).

Figure 4. P arallel transporting)?H(m) along ™

We consider H(m) because on the one hand, clearly Cr (c™) < H(m), and on
the other hand, it turns out that Xp(m) is the smallest cover of X that can
be consistently “parallel transported” along the based path ¢™, as sketched in
Figure 4. (Figure 4 also gives an overview of the constructions in this section,
including a subgraph F(m) C Xp(m) that will be explained later.)

In the rest of this section, we explain what is meant by “parallel transporting”
)Z'H(m) along ¢™. We begin by defining tw o useful functions.

Nim(h)
Cm Vm(h)

h

Figure 5. Definition of 9,,(h) and vy, (h)

Definition 3.1: By Lemma 2.4, for any h € H, there exist unique 7,,(h) € H
and v, (h) € V such that h=1¢™ = v, (h)n,, (h) L. Therefore,

(4) " (h) = hvy (R)
defines functions n,,: H — H and vp,,: H —» V.

As illustrated in Figure 5, the main idea of Definition 3.1 is that n,,(h) is
supposed to be the “parallel transport” of the based path h along ™.

The first goal of this section is to define the cylinder of H(m) in Defini-
tion 3.5. We begin by showing in Lemmas 3.3 and 3.4 that the labels that we
will use on the cylinder of H(m) are well-defined.
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Notation 3.2: In the sequel, we will freely identify any h € H with the unique
based path it defines in Xy (m).

LeEmMA 3.3: For h € H(m), vy (h) = ¢™. More generally, for any based path
h € H, the value of v, (h) depends only on the endpoint of h in Xg(m).

Proof:  Suppose h € H(m). Since h = ¢™h'c™™ for some h' € H, by Equa-
tion (4), we have

(5) ™ (h) = hvy (h) = c™hW'e v, (h),

which means that 7,, (h) = h'(¢c”"™v,,(h)). Therefore, since 1,,(h) and b’ are in
H and ¢~™v,,(h) is in V, the uniqueness of normal forms (Lemma 2.3) implies
that ¢~"v,, (h) = 1. The first assertion follows.

As for the second assertion, suppose h; and hs ha vethe same endpoint in
X1 (m). Then by Equation (4),

Vi (h2)  vm (h1) = (hy '™ (h2)) H (hy €™ (B1)

(6) -
= nm(hg)*lc*mhghl 1cmnm(h1).

However, since hoh; ' € H(m), the first assertion of the lemma implies that
Um(hahy) = ¢, which means that ¢~ ™ (hah] ')e™ = 5, (hahy*). Therefore,

(7) U (h2) " Wi (B1) = 0 (h2) ™ i (ho by ) () € HOV =1,
and the second assertion follows. [ |

LEMMA 3.4: For any h € H and any standard generator e of H, 1, (h) ™' 1y, (he)
is also a standard generator of H, depending only on e and the endpoint of h.

Proof: By Equation (4), we have

Um(R) = h ™ c™nm(h) and vy, (he) = (he) ™ nm, (he),
S0
(8) Vi (h) ™ evi (he) = 1 (h) " 1 (he).

Then, on the one hand, the left-hand side of Equation (8) depends ounly on e
and the endpoint of h (Lemma 3.3); and on the other hand, since

(9) eV (he) = v (h) (11 (h) ™ 11 (Re)),
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by Lemma 2.4,7,,(h) 1, (he) is a standard generator of H. |

We may now define our main construction, which gives a precise meaning to
the “parallel transport” sketch in Figure 4.

(1) (B
w0 Mahe)

Figure 6. Labelling the cylinder of H(m)

Definition 3.5: The cylinder of H(m) is the (labelled) square complex C'(m)
constructed as follows.

1. T opologicallylet C'(m) be Xz (m) x [0,1] (see Figure 4).

2. Label Xp(m) x 0 with the corresponding labels of X (m). (In fact, since
Xp(m) x 0 is labelled like Xz (m), w e will often treat them as iderical
in the sequel.)

3. For any based path h € H, label the “vertical” edge starting at the end-
point of b in Xy (m) x 0 with thelemen t v,,(h), as shown in Figure 6.
Note that by Lemma 3.3, this depends only on the endpoint of h. Fur-
thermore, since X g (m) is connected, this rule labels all vertical edges in
C(m).

4. For any based path h € H in Xy (m) x 0, and any standard generator e of
H, label the edge of Xy (m) x 1 that lies above the last edge of the path
he with the standard generator 7, (h) 1, (he) of H (see Lemma 3.4), as
shown on the right-hand side of Figure 6.

F or example,C'(1) is precisely the edge space of the horizontal decomposition
of X, and the 1-cells of C(1) are labelled as the corresponding 1-cells of that
edge space.

Definition 3.6: In the notation of Definition 3.5, we define the parallel trans-
port of any edge (resp. path) in Xy (m) x 0 to be the corresponding edge (resp.
path) in Xy (m) x 1.

We now come to the key property of C'(m).
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LEMMA 3.7: Ifh € H is a based path in )?H(m) x 0, then the parallel transport
of h is the based path n,,(h) in Xg(m) x 1.

Proof: This follows from an easy induction on the length of h, as indicated by
Figure 6. |

Definition 3.8: Let Fy(m) be the union of the basepoint of Xpg(m) x 0 and
all edges in Xz (m) x 0 whose parallel transports in Xpg(m) x 1 are labelled
with the same generator. We define the fixed graph F'(m) to be the connected
component of Fy(m) that contains the basepoint of X (m) x 0.

The idea of F(m) is illustrated in Figure 4. The following lemma gives tw o
alternate descriptions of F(m).

LeEmMMA 3.9: The fixed graph F'(m) is precisely the union of all based paths h
in Xg(m) x 0 such that n,,(h) = h. In other words, a based path h is contained
in F(m) if and only if h"1c™h € V.

Proof: The first statement follows immediately from Lemma 3.7. The second
statement follows from the first statement and the definition of 7, (Definition
31). 1

We now come to our main tool for analyzing the centralizer of ¢™.

THEOREM 3.10: The inclusion of the fixed graph F(m) in Xy (m) induces an
isomorphism from 71 (F(m)) onto Cg(c™) < H(m) = m (X (m)).

Proof:  On the one hand, let h be a based loop in F(m). Since h € H(m),
we have v, (h) = ¢™ (Lemma 3.3), and since h is in F(m), we haven,,(h) = h
(Lemma 3.9). Therefore, by Equation (4), ¢™h = hc¢™, which means that
heCy (Cm)

Conversely, let h be a reduced element of Cg(¢™). Since h is also in H(m),
h defines a based loop in Xy (m) and 1, (h) = ¢™he™™ (Lemma 3.3 and Equa-
tion (4)). However, if the path h ever leavesF(m), then h has an edge that
changes in its parallel transport, which means that ¢"*he™" = n,,(h) # h (since
Nm(h) is also a reduced path). Therefore, h must be contained in F'(m). The
theorem follows. |

Our last theorem of this section (Theorem 3.12) describes how the different
subgraphs F(m) fit together. We first need the following lemma.
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LEMMA 3.11: Forn > m, w e hare H(n) < H(m), which means that X (n) is
a based cover of Xy (m).

Proof: Thinking of G as an HNN extension of H with stable letter ¢, we note
that for h € H, h € H(n) if and only if ¢™"hc" reduces to some h' € H.
However, by the normal form theorem for HNN extensions, for 0 < m < n, if
¢~ ™hc™ cannot be reduced to an element of H, then ¢ "™hc¢™ also cannot be
reduced to an element of H. In other words, any element of H(n) must also be
an element of H(m). |

THEOREM 3.12: For m > 1, F(m) is a subgraph of F(2m). In particular,
F(1) CF(2) C--- C F(2%) C --- is an ascending chain of graphs.

Proof: Consider the cover Xz (2m) — Xy (m) from Lemma 3.11. The inclu-
sion of F(m) in Xp(m) lifts to a map from F(m) into Xg(2m) if and only
if every elemert of 7 (F(m)) lifts to a loop in m (X (2m)). Therefore, since
Theorem 3.10 implies

(10)  m(F(m)) = Cu(c™) < Cu(c®™) < H(2m) = m (Xu(2m)),

we may consider F(m) as a based subgraph of )?H(Qm).

By Lemma 3.9, it no w suffices toshow that every based path h in F(m) is
also contained in F(2m). So suppose h is con tainedin F(m). In that case,
h=tc¢™h € V (Lemma 3.9), which means that (h=1c™h)? = h™1c*™h € V.
Therefore, h is contained in F(2m) (Lemma 3.9 again). The theorem follows.
|

4. Full centralizers in CSC groups

In this section, retaining the notation and conven tions of Section 3, v extend
our analysis of Cgr(¢™) to the full centralizer Cq(c™). We begin by looking at
how ¢ acts on C'y(c™).

LEMMA 4.1: Form > 1, there exists a graph automorphism ~,, of F(m) such
that:
1. The automorphism of Cg(c™) = m(F(m)) induced by 7y, is precisely
conjugation by c. (In particular, ¢ normalizes Cg(c™).)
2. Considering F(m) as a subgraph of F(2m) (see Theorem 3.12), the re-
striction of Yy, to F(m) is precisely v, .
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Proof: First, following Definition 3.1, by Lemma 2.4, we may define functions
¢: H— H and ¢: H - V by the equation

(11) co(h) = hp(h).

Then, since H(m) < H(1), the proof of Lemma 3.3 shows that ¢(h) depends only
on the endpoint of a based path h in )?H(m), and the proof of Lemma 3.4 shows
that ¢ defines a relabelling of X (m) analogous to the one in Definition 3.5 and
Lemma3.7.

Next, consider an y based path h contained in the fixed graph F(m). By
Lemma 3.9, w eha e that 7,,(h) = h, which means that Equation (4) implies
h=tc™h = v, (h). Applying Equation (11), we then see that

(12)  o(h) """ d(h) = w(h) " h™ " hp(h) = Y (h) " vm ()Y (h) €V,

which means that ¢(h) is contained in F(m) (Lemma 3.9 again). Therefore, the
relabelling defined by ¢ preserves F'(m) setwise. Consequently, since F'(m) is a
finite graph, ¢ must actually induce an automorphism ~,, of F(m). Assertion 2
of the lemma follows immediately, since the automorphisms ~,, are induced by
the relabelling ¢, which is independent of m.

As for the rest of the lemma, suppose h € 71 (F(m)). First, Lemma 2.4 and
Equation (11) imply that ¥ (h) is a standard generator of V. F urthermore, since
h € m(F(m)) < H(m), we see that v, (h) = ¢, and Equation (12) implies

(13) " o(h) = ¢(h) (% ()~ ™ (h)).

Applying Lemma 2.4 again, w esee that |w(h)*1cmw(h)| = |¢™|. Therefore,
since Cy(¢™) = (¢), w emust have ¢)(h) = ¢ and ¢(h) = ¢ the. The lemma
follows. |

Remark 4.2: Note that assertion 2 of Lemma 4.1 is equivalent to saying that
w emay combine the automorphisms 7. to define an automorphism ~ of the
direct limit F(1) C F(2) C -+ C F(2F) C . We will refer to v freely in the
sequel.

LEMMA 4.3: Form > 1, Cq(c™) = Cy(c™) x {c), where the semidirect product

is defined by the action in Lemma 4.1.

Proof: By Lemma 4.1, it suffices to sho wthat Cg(c™) = (¢) Cy(c™). So
consider g € Cg(c™). By the Normal Form Lemma, we have g = ¢,9g5, where
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gy (resp. gp) is a reduced word in V' (resp. H). It will therefore be enough to
sho w that if the first letter ofg, is not ¢*!, then ¢, = 1.

So suppose that the first letter of g, is not ¢*'. By Lemma 2.4, g,c™ = kyks,
for some reduced wordk, € H and some reduced word k, € V such that
|ky| = |¢™| = m. But then, since g,g5 € Ca(c™), it follows that

(14) " gugn = gugnc™ = gukykn.

Therefore, by the uniqueness of normal forms (Lemma 2.3), w ehave ¢™g, =

guky, or in other words, k, = g, 1c™g,. However, since g, *¢™g, is reduced, and
|k,| = m, we must haveg, = 1. |

THEOREM 4.4: Let T = (). We have that (Cg(c™))ap = {c) X 1 (T\F(m))ap.-
Consequently, if the rank of 7 (F(2%)) is a strictly increasing function of k, then
the groups (Cg(c™))ab are free abelian of arbitrarily high rank.

Proof:  On the one hand, since v acts b y conjugation onm (F(m)), the image
of 71 (F(m)) in (Cg(c™))ab must certainly factor through w1 (I'\F(m))ap. On
the other hand, v has trivial action on I'\F'(m), so ¢ commutes with elements
of m (C\F(m)). The first claim of the theorem follows.

As for the other claim, if the rank of ; (F((2¥)) is a strictly increasing function
of k, since the action of v, commutes with the direct limit F(1) C F(2) C
- C F(2%) C - -+, there will be new topology at every stage of the direct limit
I\F(1) cT\F(2) C --- C '\F(2*) C ---. Therefore, the rank of 71 (I'\F(2¥))
is a strictly increasing function of k, and the theorem follows. ]

5. The examples X and X+

We now specializéhe results of Sections 3 and 4 to tw oparticular examples.
We again retain the notation and conventions of Sections 3 and 4 in this section.

Consider the CSC X from Example 2.5. Since X has one 0-cell, the results
of Sections 3 and 4 apply to X and the element ¢ € 7 (X). Furthermore, ve
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deduce from [Wis96] that X has the following remarkable property.

b O > R
> ———>— e S R >l
S > > > b b

N o L . > >—+
oty Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly Ly 1y

Figure 7. P ositie quadrant of the antitorus A

THEOREM 5.1: The fixed graphs F(2*) form a strictly increasing sequence
F(1)C F(2) Cc--- C F(2¥) C -+, with new edges and vertices at each stage.

Proof: By Theorem 3.12, we need only show that there are always new edges
and vertices in the fixed graph each time w ego from F(2*) to F(2*+1), and
this follo ws from the construction of theantitorus A in [Wis96, Section II.3].
Briefly, A is a flat plane in X whose axes are labelled by infinite paths of the
form ¢ and y*°. The positive quadrant of A is illustrated in Figure 7 (reflected
along the diagonal to conserve space), using the notation of Example 2.5 and
Figure 2. F or our purposes, the ley feature of A is the fact that it is aperiodic;
specifically, the period of each successive infinite horizontal strip is double the
period of the previous strip. In particular, the theorem follows from the fact
that for each k > 0, the path y**! lies in F/(2**1) but not in F(2*), as indicated
by the heavy lines in Figure 7. |

By Theorem 4.4, it then remains to show that the sequence F(1) C F(2) C
.. C F(2F) c --- has new topology at each stage. This probably holds for the
example X, but for the sake of brevity, we instead turn to a modified version of
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® 1 O
1]
o S

Figure 8. Horizontal decomposition of X

Proof of Theorem 1.3: Let X+ be the CSC with one 0-cell, 1-cells X{*} =
{a,b,c} and X}; = {z,y,z}, and the horizontal decomposition sho wnin Fig-
ure 8. Note that X is just the example X plus an extra horizontal generator z
that centralizes V. Let G+, HY, H(m), X7;(m), n}5, vi5, and F*(m) be the
constructions for X+ analogous to G, H, H(m), X1 (m), 1m, Vm, and F(m) for
X.

We first claim that each graph )?E(m) is precisely the graph Xy (m) with a
z self-loop added at every vertex. This is equivalent to saying that for every
h € HT, hzh~' € H*(m), which follows because Equation (4) and the fact that
z cen tralizesV imply

(15) ¢ M (hzh” )™ = g (R)vy, (h) = zvgg (), ()~

as illustrated in Figure 9.

Figure 9. All z self-loops are fixed in parallel transport
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We now observe that if & is contained in F'*(m), then n} (h) = h, and Equa-
tion (15) becomes hzh~tc™ = ¢™hzh~!. It follows that ewry z self-loop at a
vertex of F*(m) is included in F*(m), which means that F*(m) is precisely
the graph F(m) with a z self-loop added at every v ertex. Therefore, from The-
orem 5.1, we see that the strictly increasing sequence F¥ (1) C F¥(2) C --- C
FT(2%) C -+ has new topology at each stage. Theorem 4.4 then implies that
the groups (Cg+(c™))ap are free abelian of arbitrarily high finite rank, and
Theorem 1.3 follows. |
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